Dataframes
Important!
This feature requires the Polars plugin. See the Plugins Chapter to learn how to install it.
To test that this plugin is properly installed, run help polars
.
As we have seen so far, Nushell makes working with data its main priority. Lists
and Tables
are there to help you cycle through values in order to perform multiple operations or find data in a breeze. However, there are certain operations where a row-based data layout is not the most efficient way to process data, especially when working with extremely large files. Operations like group-by or join using large datasets can be costly memory-wise, and may lead to large computation times if they are not done using the appropriate data format.
For this reason, the DataFrame
structure was introduced to Nushell. A DataFrame
stores its data in a columnar format using as its base the Apache Arrow specification, and uses Polars as the motor for performing extremely fast columnar operations.
You may be wondering now how fast this combo could be, and how could it make working with data easier and more reliable. For this reason, we'll start this chapter by presenting benchmarks on common operations that are done when processing data.
Benchmark Comparisons
For this little benchmark exercise we will be comparing native Nushell commands, dataframe Nushell commands and Python Pandas commands. For the time being don't pay too much attention to the Dataframe
commands. They will be explained in later sections of this page.
System Details
The benchmarks presented in this section were run using a Macbook with a processor M1 pro and 32gb of ram. All examples were run on Nushell version 0.97 using nu_plugin_polars 0.97
.
File Information
The file that we will be using for the benchmarks is the New Zealand business demography dataset. Feel free to download it if you want to follow these tests.
The dataset has 5 columns and 5,429,252 rows. We can check that by using the polars store-ls
command:
> let df_0 = polars open --eager Data7602DescendingYearOrder.csv
> polars store-ls | select key type columns rows estimated_size
╭──────────────────────────────────────┬───────────┬─────────┬─────────┬────────────────╮
│ key │ type │ columns │ rows │ estimated_size │
├──────────────────────────────────────┼───────────┼─────────┼─────────┼────────────────┤
│ b2519dac-3b64-4e5d-a0d7-24bde9052dc7 │ DataFrame │ 5 │ 5429252 │ 184.5 MB │
╰──────────────────────────────────────┴───────────┴─────────┴─────────┴────────────────╯
Tips
As of nushell 0.97, polars open
will open as a lazy dataframe instead of a eager dataframe. To open as an eager dataframe, use the --eager
flag.
We can have a look at the first lines of the file using first
:
> $df_0 | polars first
╭───┬──────────┬─────────┬──────┬───────────┬──────────╮
│ # │ anzsic06 │ Area │ year │ geo_count │ ec_count │
├───┼──────────┼─────────┼──────┼───────────┼──────────┤
│ 0 │ A │ A100100 │ 2000 │ 96 │ 130 │
╰───┴──────────┴─────────┴──────┴───────────┴──────────╯
...and finally, we can get an idea of the inferred data types:
> $df_0 | polars schema
╭───────────┬─────╮
│ anzsic06 │ str │
│ Area │ str │
│ year │ i64 │
│ geo_count │ i64 │
│ ec_count │ i64 │
╰───────────┴─────╯
Group-by Comparison
To output more statistically correct timings, let's load and use the std bench
command.
> use std bench
We are going to group the data by year, and sum the column geo_count
.
First, let's measure the performance of a Nushell native commands pipeline.
bench -n 10 --pretty {
open 'Data7602DescendingYearOrder.csv'
| group-by year --to-table
| update items {|i|
$i.items.geo_count
| math sum
}
}
Output
3sec 268ms +/- 50ms
So, 3.3 seconds to perform this aggregation.
Let's try the same operation in pandas:
('import pandas as pd
df = pd.read_csv("Data7602DescendingYearOrder.csv")
res = df.groupby("year")["geo_count"].sum()
print(res)'
| save load.py -f)
And the result from the benchmark is:
bench -n 10 --pretty {
python load.py | complete | null
}
Output
1sec 322ms +/- 6ms
Not bad at all. Pandas managed to get it 2.6 times faster than Nushell. And with bigger files, the superiority of Pandas should increase here.
To finish the comparison, let's try Nushell dataframes. We are going to put all the operations in one nu
file, to make sure we are doing the correct comparison:
( 'polars open Data7602DescendingYearOrder.csv
| polars group-by year
| polars agg (polars col geo_count | polars sum)
| polars collect'
| save load.nu -f )
and the benchmark with dataframes (together with loading a new nushell and polars
instance for each test in order of honest comparison) is:
bench -n 10 --pretty {
nu load.nu | complete | null
}
Output
135ms +/- 4ms
The polars
dataframes plugin managed to finish operation 10 times faster than pandas
with python. Isn't that great?
As you can see, the Nushell's polars
plugin is performant like polars
itself. Coupled with Nushell commands and pipelines, it is capable of conducting sophisticated analysis without leaving the terminal.
Let's clean up the cache from the dataframes that we used during benchmarking. To do that, let's stop the polars
. When we execute our next commands, we will start a new instance of plugin.
> plugin stop polars
Working with Dataframes
After seeing a glimpse of the things that can be done with Dataframe
commands, now it is time to start testing them. To begin let's create a sample CSV file that will become our sample dataframe that we will be using along with the examples. In your favorite file editor paste the next lines to create out sample csv file.
("int_1,int_2,float_1,float_2,first,second,third,word
1,11,0.1,1.0,a,b,c,first
2,12,0.2,1.0,a,b,c,second
3,13,0.3,2.0,a,b,c,third
4,14,0.4,3.0,b,a,c,second
0,15,0.5,4.0,b,a,a,third
6,16,0.6,5.0,b,a,a,second
7,17,0.7,6.0,b,c,a,third
8,18,0.8,7.0,c,c,b,eight
9,19,0.9,8.0,c,c,b,ninth
0,10,0.0,9.0,c,c,b,ninth"
| save --raw --force test_small.csv)
Save the file and name it however you want to, for the sake of these examples the file will be called test_small.csv
.
Now, to read that file as a dataframe use the polars open
command like this:
> let df_1 = polars open --eager test_small.csv
This should create the value $df_1
in memory which holds the data we just created.
Tips
The polars open
command can read files in formats: csv, tsv, parquet, json(l), arrow, and avro.
To see all the dataframes that are stored in memory you can use
> polars store-ls | select key type columns rows estimated_size
╭──────────────────────────────────────┬───────────┬─────────┬──────┬────────────────╮
│ key │ type │ columns │ rows │ estimated_size │
├──────────────────────────────────────┼───────────┼─────────┼──────┼────────────────┤
│ e780af47-c106-49eb-b38d-d42d3946d66e │ DataFrame │ 8 │ 10 │ 403 B │
╰──────────────────────────────────────┴───────────┴─────────┴──────┴────────────────╯
As you can see, the command shows the created dataframes together with basic information about them.
And if you want to see a preview of the loaded dataframe you can send the dataframe variable to the stream
> $df_1
╭───┬───────┬───────┬─────────┬─────────┬───────┬────────┬───────┬────────╮
│ # │ int_1 │ int_2 │ float_1 │ float_2 │ first │ second │ third │ word │
├───┼───────┼───────┼─────────┼─────────┼───────┼────────┼───────┼────────┤
│ 0 │ 1 │ 11 │ 0.10 │ 1.00 │ a │ b │ c │ first │
│ 1 │ 2 │ 12 │ 0.20 │ 1.00 │ a │ b │ c │ second │
│ 2 │ 3 │ 13 │ 0.30 │ 2.00 │ a │ b │ c │ third │
│ 3 │ 4 │ 14 │ 0.40 │ 3.00 │ b │ a │ c │ second │
│ 4 │ 0 │ 15 │ 0.50 │ 4.00 │ b │ a │ a │ third │
│ 5 │ 6 │ 16 │ 0.60 │ 5.00 │ b │ a │ a │ second │
│ 6 │ 7 │ 17 │ 0.70 │ 6.00 │ b │ c │ a │ third │
│ 7 │ 8 │ 18 │ 0.80 │ 7.00 │ c │ c │ b │ eight │
│ 8 │ 9 │ 19 │ 0.90 │ 8.00 │ c │ c │ b │ ninth │
│ 9 │ 0 │ 10 │ 0.00 │ 9.00 │ c │ c │ b │ ninth │
╰───┴───────┴───────┴─────────┴─────────┴───────┴────────┴───────┴────────╯
With the dataframe in memory we can start doing column operations with the DataFrame
Tips
If you want to see all the dataframe commands that are available you can use scope commands | where category =~ dataframe
Basic Aggregations
Let's start with basic aggregations on the dataframe. Let's sum all the columns that exist in df
by using the aggregate
command
> $df_1 | polars sum
╭───┬───────┬───────┬─────────┬─────────┬───────┬────────┬───────┬──────╮
│ # │ int_1 │ int_2 │ float_1 │ float_2 │ first │ second │ third │ word │
├───┼───────┼───────┼─────────┼─────────┼───────┼────────┼───────┼──────┤
│ 0 │ 40 │ 145 │ 4.50 │ 46.00 │ │ │ │ │
╰───┴───────┴───────┴─────────┴─────────┴───────┴────────┴───────┴──────╯
As you can see, the aggregate function computes the sum for those columns where a sum makes sense. If you want to filter out the text column, you can select the columns you want by using the polars select
command
> $df_1 | polars sum | polars select int_1 int_2 float_1 float_2
╭───┬───────┬───────┬─────────┬─────────╮
│ # │ int_1 │ int_2 │ float_1 │ float_2 │
├───┼───────┼───────┼─────────┼─────────┤
│ 0 │ 40 │ 145 │ 4.50 │ 46.00 │
╰───┴───────┴───────┴─────────┴─────────╯
You can even store the result from this aggregation as you would store any other Nushell variable
> let res = $df_1 | polars sum | polars select int_1 int_2 float_1 float_2
Tips
Type let res = !!
and press enter. This will auto complete the previously executed command. Note the space between =
and !!
.
And now we have two dataframes stored in memory
> polars store-ls | select key type columns rows estimated_size
╭──────────────────────────────────────┬───────────┬─────────┬──────┬────────────────╮
│ key │ type │ columns │ rows │ estimated_size │
├──────────────────────────────────────┼───────────┼─────────┼──────┼────────────────┤
│ e780af47-c106-49eb-b38d-d42d3946d66e │ DataFrame │ 8 │ 10 │ 403 B │
│ 3146f4c1-f2a0-475b-a623-7375c1fdb4a7 │ DataFrame │ 4 │ 1 │ 32 B │
╰──────────────────────────────────────┴───────────┴─────────┴──────┴────────────────╯
Pretty neat, isn't it?
You can perform several aggregations on the dataframe in order to extract basic information from the dataframe and do basic data analysis on your brand new dataframe.
Joining a DataFrame
It is also possible to join two dataframes using a column as reference. We are going to join our mini dataframe with another mini dataframe. Copy these lines in another file and create the corresponding dataframe (for these examples we are going to call it test_small_a.csv
)
"int_1,int_2,float_1,float_2,first
9,14,0.4,3.0,a
8,13,0.3,2.0,a
7,12,0.2,1.0,a
6,11,0.1,0.0,b"
| save --raw --force test_small_a.csv
We use the polars open
command to create the new variable
> let df_2 = polars open --eager test_small_a.csv
Now, with the second dataframe loaded in memory we can join them using the column called int_1
from the left dataframe and the column int_1
from the right dataframe
> $df_1 | polars join $df_2 int_1 int_1
╭───┬───────┬───────┬─────────┬─────────┬───────┬────────┬───────┬────────┬─────────┬───────────┬───────────┬─────────╮
│ # │ int_1 │ int_2 │ float_1 │ float_2 │ first │ second │ third │ word │ int_2_x │ float_1_x │ float_2_x │ first_x │
├───┼───────┼───────┼─────────┼─────────┼───────┼────────┼───────┼────────┼─────────┼───────────┼───────────┼─────────┤
│ 0 │ 6 │ 16 │ 0.60 │ 5.00 │ b │ a │ a │ second │ 11 │ 0.10 │ 0.00 │ b │
│ 1 │ 7 │ 17 │ 0.70 │ 6.00 │ b │ c │ a │ third │ 12 │ 0.20 │ 1.00 │ a │
│ 2 │ 8 │ 18 │ 0.80 │ 7.00 │ c │ c │ b │ eight │ 13 │ 0.30 │ 2.00 │ a │
│ 3 │ 9 │ 19 │ 0.90 │ 8.00 │ c │ c │ b │ ninth │ 14 │ 0.40 │ 3.00 │ a │
╰───┴───────┴───────┴─────────┴─────────┴───────┴────────┴───────┴────────┴─────────┴───────────┴───────────┴─────────╯
Tips
In Nu
when a command has multiple arguments that are expecting multiple values we use brackets []
to enclose those values. In the case of polars join
we can join on multiple columns as long as they have the same type.
For example:
> $df_1 | polars join $df_2 [int_1 first] [int_1 first]
╭───┬───────┬───────┬─────────┬─────────┬───────┬────────┬───────┬────────┬─────────┬───────────┬───────────╮
│ # │ int_1 │ int_2 │ float_1 │ float_2 │ first │ second │ third │ word │ int_2_x │ float_1_x │ float_2_x │
├───┼───────┼───────┼─────────┼─────────┼───────┼────────┼───────┼────────┼─────────┼───────────┼───────────┤
│ 0 │ 6 │ 16 │ 0.60 │ 5.00 │ b │ a │ a │ second │ 11 │ 0.10 │ 0.00 │
╰───┴───────┴───────┴─────────┴─────────┴───────┴────────┴───────┴────────┴─────────┴───────────┴───────────╯
By default, the join command does an inner join, meaning that it will keep the rows where both dataframes share the same value. You can select a left join to keep the missing rows from the left dataframe. You can also save this result in order to use it for further operations.
DataFrame group-by
One of the most powerful operations that can be performed with a DataFrame is the polars group-by
. This command will allow you to perform aggregation operations based on a grouping criteria. In Nushell, a GroupBy
is a type of object that can be stored and reused for multiple aggregations. This is quite handy, since the creation of the grouped pairs is the most expensive operation while doing group-by and there is no need to repeat it if you are planning to do multiple operations with the same group condition.
To create a GroupBy
object you only need to use the polars_group-by
command
> let group = $df_1 | polars group-by first
> $group
╭─────────────┬──────────────────────────────────────────────╮
│ LazyGroupBy │ apply aggregation to complete execution plan │
╰─────────────┴──────────────────────────────────────────────╯
When printing the GroupBy
object we can see that it is in the background a lazy operation waiting to be completed by adding an aggregation. Using the GroupBy
we can create aggregations on a column
> $group | polars agg (polars col int_1 | polars sum)
╭────────────────┬───────────────────────────────────────────────────────────────────────────────────────╮
│ plan │ AGGREGATE │
│ │ [col("int_1").sum()] BY [col("first")] FROM │
│ │ DF ["int_1", "int_2", "float_1", "float_2"]; PROJECT */8 COLUMNS; SELECTION: "None" │
│ optimized_plan │ AGGREGATE │
│ │ [col("int_1").sum()] BY [col("first")] FROM │
│ │ DF ["int_1", "int_2", "float_1", "float_2"]; PROJECT 2/8 COLUMNS; SELECTION: "None" │
╰────────────────┴───────────────────────────────────────────────────────────────────────────────────────╯
or we can define multiple aggregations on the same or different columns
$group
| polars agg [
(polars col int_1 | polars n-unique)
(polars col int_2 | polars min)
(polars col float_1 | polars sum)
(polars col float_2 | polars count)
] | polars sort-by first
Output
╭────────────────┬─────────────────────────────────────────────────────────────────────────────────────────────────────╮
│ plan │ SORT BY [col("first")] │
│ │ AGGREGATE │
│ │ [col("int_1").n_unique(), col("int_2").min(), col("float_1") │
│ │ .sum(), col("float_2").count()] BY [col("first")] FROM │
│ │ DF ["int_1", "int_2", "float_1", "float_2 │
│ │ "]; PROJECT */8 COLUMNS; SELECTION: "None" │
│ optimized_plan │ SORT BY [col("first")] │
│ │ AGGREGATE │
│ │ [col("int_1").n_unique(), col("int_2").min(), col("float_1") │
│ │ .sum(), col("float_2").count()] BY [col("first")] FROM │
│ │ DF ["int_1", "int_2", "float_1", "float_2 │
│ │ "]; PROJECT 5/8 COLUMNS; SELECTION: "None" │
╰────────────────┴─────────────────────────────────────────────────────────────────────────────────────────────────────╯
As you can see, the GroupBy
object is a very powerful variable and it is worth keeping in memory while you explore your dataset.
Creating Dataframes
It is also possible to construct dataframes from basic Nushell primitives, such as integers, decimals, or strings. Let's create a small dataframe using the command polars into-df
.
> let df_3 = [[a b]; [1 2] [3 4] [5 6]] | polars into-df
> $df_3
╭───┬───┬───╮
│ # │ a │ b │
├───┼───┼───┤
│ 0 │ 1 │ 2 │
│ 1 │ 3 │ 4 │
│ 2 │ 5 │ 6 │
╰───┴───┴───╯
Tips
For the time being, not all of Nushell primitives can be converted into a dataframe. This will change in the future, as the dataframe feature matures
We can append columns to a dataframe in order to create a new variable. As an example, let's append two columns to our mini dataframe $df_3
> let df_4 = $df_3 | polars with-column $df_3.a --name a2 | polars with-column $df_3.a --name a3
> $df_4
╭───┬───┬───┬────┬────╮
│ # │ a │ b │ a2 │ a3 │
├───┼───┼───┼────┼────┤
│ 0 │ 1 │ 2 │ 1 │ 1 │
│ 1 │ 3 │ 4 │ 3 │ 3 │
│ 2 │ 5 │ 6 │ 5 │ 5 │
╰───┴───┴───┴────┴────╯
Nushell's powerful piping syntax allows us to create new dataframes by taking data from other dataframes and appending it to them. Now, if you list your dataframes you will see in total five dataframes
> polars store-ls | select key type columns rows estimated_size
╭──────────────────────────────────────┬─────────────┬─────────┬──────┬────────────────╮
│ key │ type │ columns │ rows │ estimated_size │
├──────────────────────────────────────┼─────────────┼─────────┼──────┼────────────────┤
│ e780af47-c106-49eb-b38d-d42d3946d66e │ DataFrame │ 8 │ 10 │ 403 B │
│ 3146f4c1-f2a0-475b-a623-7375c1fdb4a7 │ DataFrame │ 4 │ 1 │ 32 B │
│ 455a1483-e328-43e2-a354-35afa32803b9 │ DataFrame │ 5 │ 4 │ 132 B │
│ 0d8532a5-083b-4f78-8f66-b5e6b59dc449 │ LazyGroupBy │ │ │ │
│ 9504dfaf-4782-42d4-9110-9dae7c8fb95b │ DataFrame │ 2 │ 3 │ 48 B │
│ 37ab1bdc-e1fb-426d-8006-c3f974764a3d │ DataFrame │ 4 │ 3 │ 96 B │
╰──────────────────────────────────────┴─────────────┴─────────┴──────┴────────────────╯
One thing that is important to mention is how the memory is being optimized while working with dataframes, and this is thanks to Apache Arrow and Polars. In a very simple representation, each column in a DataFrame is an Arrow Array, which is using several memory specifications in order to maintain the data as packed as possible (check Arrow columnar format). The other optimization trick is the fact that whenever possible, the columns from the dataframes are shared between dataframes, avoiding memory duplication for the same data. This means that dataframes $df_3
and $df_4
are sharing the same two columns we created using the polars into-df
command. For this reason, it isn't possible to change the value of a column in a dataframe. However, you can create new columns based on data from other columns or dataframes.
Working with Series
A Series
is the building block of a DataFrame
. Each Series represents a column with the same data type, and we can create multiple Series of different types, such as float, int or string.
Let's start our exploration with Series by creating one using the polars into-df
command:
> let df_5 = [9 8 4] | polars into-df
> $df_5
╭───┬───╮
│ # │ 0 │
├───┼───┤
│ 0 │ 9 │
│ 1 │ 8 │
│ 2 │ 4 │
╰───┴───╯
We have created a new series from a list of integers (we could have done the same using floats or strings)
Series have their own basic operations defined, and they can be used to create other Series. Let's create a new Series by doing some arithmetic on the previously created column.
> let df_6 = $df_5 * 3 + 10
> $df_6
╭───┬────╮
│ # │ 0 │
├───┼────┤
│ 0 │ 37 │
│ 1 │ 34 │
│ 2 │ 22 │
╰───┴────╯
Now we have a new Series that was constructed by doing basic operations on the previous variable.
Tips
If you want to see how many variables you have stored in memory you can use scope variables
Let's rename our previous Series so it has a memorable name
> let df_7 = $df_6 | polars rename "0" memorable
> $df_7
╭───┬───────────╮
│ # │ memorable │
├───┼───────────┤
│ 0 │ 37 │
│ 1 │ 34 │
│ 2 │ 22 │
╰───┴───────────╯
We can also do basic operations with two Series as long as they have the same data type
> $df_5 - $df_7
╭───┬─────────────────╮
│ # │ sub_0_memorable │
├───┼─────────────────┤
│ 0 │ -28 │
│ 1 │ -26 │
│ 2 │ -18 │
╰───┴─────────────────╯
And we can add them to previously defined dataframes
> let df_8 = $df_3 | polars with-column $df_5 --name new_col
> $df_8
╭───┬───┬───┬─────────╮
│ # │ a │ b │ new_col │
├───┼───┼───┼─────────┤
│ 0 │ 1 │ 2 │ 9 │
│ 1 │ 3 │ 4 │ 8 │
│ 2 │ 5 │ 6 │ 4 │
╰───┴───┴───┴─────────╯
The Series stored in a Dataframe can also be used directly, for example, we can multiply columns a
and b
to create a new Series
> $df_8.a * $df_8.b
╭───┬─────────╮
│ # │ mul_a_b │
├───┼─────────┤
│ 0 │ 2 │
│ 1 │ 12 │
│ 2 │ 30 │
╰───┴─────────╯
and we can start piping things in order to create new columns and dataframes
> let df_9 = $df_8 | polars with-column ($df_8.a * $df_8.b / $df_8.new_col) --name my_sum
> $df_9
╭───┬───┬───┬─────────┬────────╮
│ # │ a │ b │ new_col │ my_sum │
├───┼───┼───┼─────────┼────────┤
│ 0 │ 1 │ 2 │ 9 │ 0 │
│ 1 │ 3 │ 4 │ 8 │ 1 │
│ 2 │ 5 │ 6 │ 4 │ 7 │
╰───┴───┴───┴─────────┴────────╯
Nushell's piping system can help you create very interesting workflows.
Series and Masks
Series have another key use in when working with DataFrames
, and it is the fact that we can build boolean masks out of them. Let's start by creating a simple mask using the equality operator
> let mask_0 = $df_5 == 8
> $mask_0
╭───┬───────╮
│ # │ 0 │
├───┼───────┤
│ 0 │ false │
│ 1 │ true │
│ 2 │ false │
╰───┴───────╯
and with this mask we can now filter a dataframe, like this
> $df_9 | polars filter-with $mask_0
╭───┬───┬───┬─────────┬────────╮
│ # │ a │ b │ new_col │ my_sum │
├───┼───┼───┼─────────┼────────┤
│ 0 │ 3 │ 4 │ 8 │ 1 │
╰───┴───┴───┴─────────┴────────╯
Now we have a new dataframe with only the values where the mask was true.
The masks can also be created from Nushell lists, for example:
> let mask_1 = [true true false] | polars into-df
> $df_9 | polars filter-with $mask_1
╭───┬───┬───┬─────────┬────────╮
│ # │ a │ b │ new_col │ my_sum │
├───┼───┼───┼─────────┼────────┤
│ 0 │ 1 │ 2 │ 9 │ 0 │
│ 1 │ 3 │ 4 │ 8 │ 1 │
╰───┴───┴───┴─────────┴────────╯
To create complex masks, we have the AND
> $mask_0 and $mask_1
╭───┬─────────╮
│ # │ and_0_0 │
├───┼─────────┤
│ 0 │ false │
│ 1 │ true │
│ 2 │ false │
╰───┴─────────╯
and OR
operations
> $mask_0 or $mask_1
╭───┬────────╮
│ # │ or_0_0 │
├───┼────────┤
│ 0 │ true │
│ 1 │ true │
│ 2 │ false │
╰───┴────────╯
We can also create a mask by checking if some values exist in other Series. Using the first dataframe that we created we can do something like this
> let mask_2 = $df_1 | polars col first | polars is-in [b c]
> $mask_2
╭──────────┬─────────────────────────╮
│ input │ [table 2 rows] │
│ function │ Boolean(IsIn) │
│ options │ FunctionOptions { ... } │
╰──────────┴─────────────────────────╯
and this new mask can be used to filter the dataframe
> $df_1 | polars filter-with $mask_2
╭───┬───────┬───────┬─────────┬─────────┬───────┬────────┬───────┬────────╮
│ # │ int_1 │ int_2 │ float_1 │ float_2 │ first │ second │ third │ word │
├───┼───────┼───────┼─────────┼─────────┼───────┼────────┼───────┼────────┤
│ 0 │ 4 │ 14 │ 0.40 │ 3.00 │ b │ a │ c │ second │
│ 1 │ 0 │ 15 │ 0.50 │ 4.00 │ b │ a │ a │ third │
│ 2 │ 6 │ 16 │ 0.60 │ 5.00 │ b │ a │ a │ second │
│ 3 │ 7 │ 17 │ 0.70 │ 6.00 │ b │ c │ a │ third │
│ 4 │ 8 │ 18 │ 0.80 │ 7.00 │ c │ c │ b │ eight │
│ 5 │ 9 │ 19 │ 0.90 │ 8.00 │ c │ c │ b │ ninth │
│ 6 │ 0 │ 10 │ 0.00 │ 9.00 │ c │ c │ b │ ninth │
╰───┴───────┴───────┴─────────┴─────────┴───────┴────────┴───────┴────────╯
Another operation that can be done with masks is setting or replacing a value from a series. For example, we can change the value in the column first
where the value is equal to a
> $df_1 | polars get first | polars set new --mask ($df_1.first =~ a)
╭───┬────────╮
│ # │ string │
├───┼────────┤
│ 0 │ new │
│ 1 │ new │
│ 2 │ new │
│ 3 │ b │
│ 4 │ b │
│ 5 │ b │
│ 6 │ b │
│ 7 │ c │
│ 8 │ c │
│ 9 │ c │
╰───┴────────╯
Series as Indices
Series can be also used as a way of filtering a dataframe by using them as a list of indices. For example, let's say that we want to get rows 1, 4, and 6 from our original dataframe. With that in mind, we can use the next command to extract that information
> let indices_0 = [1 4 6] | polars into-df
> $df_1 | polars take $indices_0
╭───┬───────┬───────┬─────────┬─────────┬───────┬────────┬───────┬────────╮
│ # │ int_1 │ int_2 │ float_1 │ float_2 │ first │ second │ third │ word │
├───┼───────┼───────┼─────────┼─────────┼───────┼────────┼───────┼────────┤
│ 0 │ 2 │ 12 │ 0.20 │ 1.00 │ a │ b │ c │ second │
│ 1 │ 0 │ 15 │ 0.50 │ 4.00 │ b │ a │ a │ third │
│ 2 │ 7 │ 17 │ 0.70 │ 6.00 │ b │ c │ a │ third │
╰───┴───────┴───────┴─────────┴─────────┴───────┴────────┴───────┴────────╯
The command polars take
is very handy, especially if we mix it with other commands. Let's say that we want to extract all rows for the first duplicated element for column first
. In order to do that, we can use the command polars arg-unique
as shown in the next example
> let indices_1 = $df_1 | polars get first | polars arg-unique
> $df_1 | polars take $indices_1
╭───┬───────┬───────┬─────────┬─────────┬───────┬────────┬───────┬────────╮
│ # │ int_1 │ int_2 │ float_1 │ float_2 │ first │ second │ third │ word │
├───┼───────┼───────┼─────────┼─────────┼───────┼────────┼───────┼────────┤
│ 0 │ 1 │ 11 │ 0.10 │ 1.00 │ a │ b │ c │ first │
│ 1 │ 4 │ 14 │ 0.40 │ 3.00 │ b │ a │ c │ second │
│ 2 │ 8 │ 18 │ 0.80 │ 7.00 │ c │ c │ b │ eight │
╰───┴───────┴───────┴─────────┴─────────┴───────┴────────┴───────┴────────╯
Or what if we want to create a new sorted dataframe using a column in specific. We can use the arg-sort
to accomplish that. In the next example we can sort the dataframe by the column word
Tips
The same result could be accomplished using the command sort
> let indices_2 = $df_1 | polars get word | polars arg-sort
> $df_1 | polars take $indices_2
╭───┬───────┬───────┬─────────┬─────────┬───────┬────────┬───────┬────────╮
│ # │ int_1 │ int_2 │ float_1 │ float_2 │ first │ second │ third │ word │
├───┼───────┼───────┼─────────┼─────────┼───────┼────────┼───────┼────────┤
│ 0 │ 8 │ 18 │ 0.80 │ 7.00 │ c │ c │ b │ eight │
│ 1 │ 1 │ 11 │ 0.10 │ 1.00 │ a │ b │ c │ first │
│ 2 │ 9 │ 19 │ 0.90 │ 8.00 │ c │ c │ b │ ninth │
│ 3 │ 0 │ 10 │ 0.00 │ 9.00 │ c │ c │ b │ ninth │
│ 4 │ 2 │ 12 │ 0.20 │ 1.00 │ a │ b │ c │ second │
│ 5 │ 4 │ 14 │ 0.40 │ 3.00 │ b │ a │ c │ second │
│ 6 │ 6 │ 16 │ 0.60 │ 5.00 │ b │ a │ a │ second │
│ 7 │ 3 │ 13 │ 0.30 │ 2.00 │ a │ b │ c │ third │
│ 8 │ 0 │ 15 │ 0.50 │ 4.00 │ b │ a │ a │ third │
│ 9 │ 7 │ 17 │ 0.70 │ 6.00 │ b │ c │ a │ third │
╰───┴───────┴───────┴─────────┴─────────┴───────┴────────┴───────┴────────╯
And finally, we can create new Series by setting a new value in the marked indices. Have a look at the next command
> let indices_3 = [0 2] | polars into-df
> $df_1 | polars get int_1 | polars set-with-idx 123 --indices $indices_3
╭───┬───────╮
│ # │ int_1 │
├───┼───────┤
│ 0 │ 123 │
│ 1 │ 2 │
│ 2 │ 123 │
│ 3 │ 4 │
│ 4 │ 0 │
│ 5 │ 6 │
│ 6 │ 7 │
│ 7 │ 8 │
│ 8 │ 9 │
│ 9 │ 0 │
╰───┴───────╯
Unique Values
Another operation that can be done with Series
is to search for unique values in a list or column. Lets use again the first dataframe we created to test these operations.
The first and most common operation that we have is value_counts
. This command calculates a count of the unique values that exist in a Series. For example, we can use it to count how many occurrences we have in the column first
> $df_1 | polars get first | polars value-counts
╭───┬───────┬───────╮
│ # │ first │ count │
├───┼───────┼───────┤
│ 0 │ a │ 3 │
│ 1 │ b │ 4 │
│ 2 │ c │ 3 │
╰───┴───────┴───────╯
As expected, the command returns a new dataframe that can be used to do more queries.
Continuing with our exploration of Series
, the next thing that we can do is to only get the unique unique values from a series, like this
> $df_1 | polars get first | polars unique
╭───┬───────╮
│ # │ first │
├───┼───────┤
│ 0 │ a │
│ 1 │ b │
│ 2 │ c │
╰───┴───────╯
Or we can get a mask that we can use to filter out the rows where data is unique or duplicated. For example, we can select the rows for unique values in column word
$df_1 | polars filter-with ($in.word | polars is-unique)
Output
╭───┬───────┬───────┬─────────┬─────────┬───────┬────────┬───────┬───────╮
│ # │ int_1 │ int_2 │ float_1 │ float_2 │ first │ second │ third │ word │
├───┼───────┼───────┼─────────┼─────────┼───────┼────────┼───────┼───────┤
│ 0 │ 1 │ 11 │ 0.10 │ 1.00 │ a │ b │ c │ first │
│ 1 │ 8 │ 18 │ 0.80 │ 7.00 │ c │ c │ b │ eight │
╰───┴───────┴───────┴─────────┴─────────┴───────┴────────┴───────┴───────╯
Or all the duplicated ones
$df_1 | polars filter-with ($in.word | polars is-duplicated)
Output
╭───┬───────┬───────┬─────────┬─────────┬───────┬────────┬───────┬────────╮
│ # │ int_1 │ int_2 │ float_1 │ float_2 │ first │ second │ third │ word │
├───┼───────┼───────┼─────────┼─────────┼───────┼────────┼───────┼────────┤
│ 0 │ 2 │ 12 │ 0.20 │ 1.00 │ a │ b │ c │ second │
│ 1 │ 3 │ 13 │ 0.30 │ 2.00 │ a │ b │ c │ third │
│ 2 │ 4 │ 14 │ 0.40 │ 3.00 │ b │ a │ c │ second │
│ 3 │ 0 │ 15 │ 0.50 │ 4.00 │ b │ a │ a │ third │
│ 4 │ 6 │ 16 │ 0.60 │ 5.00 │ b │ a │ a │ second │
│ 5 │ 7 │ 17 │ 0.70 │ 6.00 │ b │ c │ a │ third │
│ 6 │ 9 │ 19 │ 0.90 │ 8.00 │ c │ c │ b │ ninth │
│ 7 │ 0 │ 10 │ 0.00 │ 9.00 │ c │ c │ b │ ninth │
╰───┴───────┴───────┴─────────┴─────────┴───────┴────────┴───────┴────────╯
Lazy Dataframes
Lazy dataframes are a way to query data by creating a logical plan. The advantage of this approach is that the plan never gets evaluated until you need to extract data. This way you could chain together aggregations, joins and selections and collect the data once you are happy with the selected operations.
Let's create a small example of a lazy dataframe
> let lf_0 = [[a b]; [1 a] [2 b] [3 c] [4 d]] | polars into-lazy
> $lf_0
╭────────────────┬───────────────────────────────────────────────────────╮
│ plan │ DF ["a", "b"]; PROJECT */2 COLUMNS; SELECTION: "None" │
│ optimized_plan │ DF ["a", "b"]; PROJECT */2 COLUMNS; SELECTION: "None" │
╰────────────────┴───────────────────────────────────────────────────────╯
As you can see, the resulting dataframe is not yet evaluated, it stays as a set of instructions that can be done on the data. If you were to collect that dataframe you would get the next result
> $lf_0 | polars collect
╭───┬───┬───╮
│ # │ a │ b │
├───┼───┼───┤
│ 0 │ 1 │ a │
│ 1 │ 2 │ b │
│ 2 │ 3 │ c │
│ 3 │ 4 │ d │
╰───┴───┴───╯
as you can see, the collect command executes the plan and creates a nushell table for you.
All dataframes operations should work with eager or lazy dataframes. They are converted in the background for compatibility. However, to take advantage of lazy operations if is recommended to only use lazy operations with lazy dataframes.
To find all lazy dataframe operations you can use
scope commands | where category =~ lazyframe | select name category usage
With your lazy frame defined we can start chaining operations on it. For example this
$lf_0
| polars reverse
| polars with-column [
((polars col a) * 2 | polars as double_a)
((polars col a) / 2 | polars as half_a)
]
| polars collect
Output
╭───┬───┬───┬──────────┬────────╮
│ # │ a │ b │ double_a │ half_a │
├───┼───┼───┼──────────┼────────┤
│ 0 │ 4 │ d │ 8 │ 2 │
│ 1 │ 3 │ c │ 6 │ 1 │
│ 2 │ 2 │ b │ 4 │ 1 │
│ 3 │ 1 │ a │ 2 │ 0 │
╰───┴───┴───┴──────────┴────────╯
Tips
You can use the line buffer editor to format your queries (ctr + o
) easily
This query uses the lazy reverse command to invert the dataframe and the polars with-column
command to create new two columns using expressions
. An expression
is used to define an operation that is executed on the lazy frame. When put together they create the whole set of instructions used by the lazy commands to query the data. To list all the commands that generate an expression you can use
scope commands | where category =~ expression | select name category usage
In our previous example, we use the polars col
command to indicate that column a
will be multiplied by 2 and then it will be aliased to the name double_a
. In some cases the use of the polars col
command can be inferred. For example, using the polars select
command we can use only a string
> $lf_0 | polars select a | polars collect
╭───┬───╮
│ # │ a │
├───┼───┤
│ 0 │ 1 │
│ 1 │ 2 │
│ 2 │ 3 │
│ 3 │ 4 │
╰───┴───╯
or the polars col
command
> $lf_0 | polars select (polars col a) | polars collect
╭───┬───╮
│ # │ a │
├───┼───┤
│ 0 │ 1 │
│ 1 │ 2 │
│ 2 │ 3 │
│ 3 │ 4 │
╰───┴───╯
Let's try something more complicated and create aggregations from a lazy dataframe
let lf_1 = [[name value]; [one 1] [two 2] [one 1] [two 3]] | polars into-lazy
$lf_1
| polars group-by name
| polars agg [
(polars col value | polars sum | polars as sum)
(polars col value | polars mean | polars as mean)
]
| polars collect
Output
╭───┬──────┬─────┬──────╮
│ # │ name │ sum │ mean │
├───┼──────┼─────┼──────┤
│ 0 │ two │ 5 │ 2.50 │
│ 1 │ one │ 2 │ 1.00 │
╰───┴──────┴─────┴──────╯
And we could join on a lazy dataframe that hasn't being collected. Let's join the resulting group by to the original lazy frame
let lf_2 = [[name value]; [one 1] [two 2] [one 1] [two 3]] | polars into-lazy
let group = $lf_2
| polars group-by name
| polars agg [
(polars col value | polars sum | polars as sum)
(polars col value | polars mean | polars as mean)
]
$lf_2 | polars join $group name name | polars collect
Output
╭───┬──────┬───────┬─────┬──────╮
│ # │ name │ value │ sum │ mean │
├───┼──────┼───────┼─────┼──────┤
│ 0 │ one │ 1 │ 2 │ 1.00 │
│ 1 │ two │ 2 │ 5 │ 2.50 │
│ 2 │ one │ 1 │ 2 │ 1.00 │
│ 3 │ two │ 3 │ 5 │ 2.50 │
╰───┴──────┴───────┴─────┴──────╯
As you can see lazy frames are a powerful construct that will let you query data using a flexible syntax, resulting in blazing fast results.
Dataframe Commands
So far we have seen quite a few operations that can be done using DataFrame
s commands. However, the commands we have used so far are not all the commands available to work with data and be assured that there will be more as the feature becomes more stable.
The next list shows the available dataframe commands with their descriptions, and whenever possible, their analogous Nushell command.
Warning
This list may be outdated. To get the up-to-date command list, see Dataframe, Lazyframe, Dataframe Or Lazyframe, Expressions command categories.
Command Name | Applies To | Description | Nushell Equivalent |
---|---|---|---|
polars agg | dataframe | Performs a series of aggregations from a group-by. | math |
polars agg-groups | expression | Creates an agg_groups expression. | |
polars all-false | dataframe | Returns true if all values are false. | |
polars all-true | dataframe | Returns true if all values are true. | all |
polars append | dataframe | Appends a new dataframe. | |
polars arg-max | dataframe | Return index for max value in series. | |
polars arg-min | dataframe | Return index for min value in series. | |
polars arg-sort | dataframe | Returns indexes for a sorted series. | |
polars arg-true | dataframe | Returns indexes where values are true. | |
polars arg-unique | dataframe | Returns indexes for unique values. | |
polars arg-where | any | Creates an expression that returns the arguments where expression is true. | |
polars as | expression | Creates an alias expression. | |
polars as-date | dataframe | Converts string to date. | |
polars as-datetime | dataframe | Converts string to datetime. | |
polars cache | dataframe | Caches operations in a new LazyFrame. | |
polars cast | expression, dataframe | Cast a column to a different dtype. | |
polars col | any | Creates a named column expression. | |
polars collect | dataframe | Collect lazy dataframe into eager dataframe. | |
polars columns | dataframe | Show dataframe columns. | |
polars concat-str | any | Creates a concat string expression. | |
polars concatenate | dataframe | Concatenates strings with other array. | |
polars contains | dataframe | Checks if a pattern is contained in a string. | |
polars count | expression | Creates a count expression. | |
polars count-null | dataframe | Counts null values. | |
polars cumulative | dataframe | Cumulative calculation for a series. | |
polars datepart | expression | Creates an expression for capturing the specified datepart in a column. | |
polars drop | dataframe | Creates a new dataframe by dropping the selected columns. | drop |
polars drop-duplicates | dataframe | Drops duplicate values in dataframe. | |
polars drop-nulls | dataframe | Drops null values in dataframe. | |
polars dummies | dataframe | Creates a new dataframe with dummy variables. | |
polars explode | expression, dataframe | Explodes a dataframe or creates a explode expression. | |
polars expr-not | expression | Creates a not expression. | |
polars fetch | dataframe | Collects the lazyframe to the selected rows. | |
polars fill-nan | dataframe | Replaces NaN values with the given expression. | |
polars fill-null | dataframe | Replaces NULL values with the given expression. | |
polars filter | dataframe | Filter dataframe based in expression. | |
polars filter-with | dataframe | Filters dataframe using a mask or expression as reference. | |
polars first | expression, dataframe | Show only the first number of rows or create a first expression | first |
polars flatten | expression, dataframe | An alias for polars explode. | |
polars get | dataframe | Creates dataframe with the selected columns. | get |
polars get-day | dataframe | Gets day from date. | |
polars get-hour | dataframe | Gets hour from date. | |
polars get-minute | dataframe | Gets minute from date. | |
polars get-month | dataframe | Gets month from date. | |
polars get-nanosecond | dataframe | Gets nanosecond from date. | |
polars get-ordinal | dataframe | Gets ordinal from date. | |
polars get-second | dataframe | Gets second from date. | |
polars get-week | dataframe | Gets week from date. | |
polars get-weekday | dataframe | Gets weekday from date. | |
polars get-year | dataframe | Gets year from date. | |
polars group-by | dataframe | Creates a group-by object that can be used for other aggregations. | group-by |
polars implode | expression | Aggregates a group to a Series. | |
polars into-df | any | Converts a list, table or record into a dataframe. | |
polars into-lazy | any | Converts a dataframe into a lazy dataframe. | |
polars into-nu | expression, dataframe | Converts a dataframe or an expression into into nushell value for access and exploration. | |
polars is-duplicated | dataframe | Creates mask indicating duplicated values. | |
polars is-in | expression, dataframe | Creates an is-in expression or checks to see if the elements are contained in the right series | in |
polars is-not-null | expression, dataframe | Creates mask where value is not null. | |
polars is-null | expression, dataframe | Creates mask where value is null. | <column_name> == null |
polars is-unique | dataframe | Creates mask indicating unique values. | |
polars join | dataframe | Joins a lazy frame with other lazy frame. | |
polars last | expression, dataframe | Creates new dataframe with tail rows or creates a last expression. | last |
polars lit | any | Creates a literal expression. | |
polars lowercase | dataframe | Lowercase the strings in the column. | |
polars max | expression, dataframe | Creates a max expression or aggregates columns to their max value. | |
polars mean | expression, dataframe | Creates a mean expression for an aggregation or aggregates columns to their mean value. | |
polars median | expression, dataframe | Median value from columns in a dataframe or creates expression for an aggregation | |
polars melt | dataframe | Unpivot a DataFrame from wide to long format. | |
polars min | expression, dataframe | Creates a min expression or aggregates columns to their min value. | |
polars n-unique | expression, dataframe | Counts unique values. | |
polars not | dataframe | Inverts boolean mask. | |
polars open | any | Opens CSV, JSON, JSON lines, arrow, avro, or parquet file to create dataframe. | open |
polars otherwise | any | Completes a when expression. | |
polars quantile | expression, dataframe | Aggregates the columns to the selected quantile. | |
polars query | dataframe | Query dataframe using SQL. Note: The dataframe is always named 'df' in your query's from clause. | |
polars rename | dataframe | Rename a dataframe column. | rename |
polars replace | dataframe | Replace the leftmost (sub)string by a regex pattern. | |
polars replace-all | dataframe | Replace all (sub)strings by a regex pattern. | |
polars reverse | dataframe | Reverses the LazyFrame | |
polars rolling | dataframe | Rolling calculation for a series. | |
polars sample | dataframe | Create sample dataframe. | |
polars save | dataframe | Saves a dataframe to disk. For lazy dataframes a sink operation will be used if the file type supports it (parquet, ipc/arrow, csv, and ndjson). | |
polars schema | dataframe | Show schema for a dataframe. | |
polars select | dataframe | Selects columns from lazyframe. | select |
polars set | dataframe | Sets value where given mask is true. | |
polars set-with-idx | dataframe | Sets value in the given index. | |
polars shape | dataframe | Shows column and row size for a dataframe. | |
polars shift | dataframe | Shifts the values by a given period. | |
polars slice | dataframe | Creates new dataframe from a slice of rows. | |
polars sort-by | dataframe | Sorts a lazy dataframe based on expression(s). | sort |
polars std | expression, dataframe | Creates a std expression for an aggregation of std value from columns in a dataframe. | |
polars store-get | any, any | Gets a Dataframe or other object from the plugin cache. | |
polars store-ls | Lists stored dataframes. | ||
polars store-rm | any | Removes a stored Dataframe or other object from the plugin cache. | |
polars str-lengths | dataframe | Get lengths of all strings. | |
polars str-slice | dataframe | Slices the string from the start position until the selected length. | |
polars strftime | dataframe | Formats date based on string rule. | |
polars sum | expression, dataframe | Creates a sum expression for an aggregation or aggregates columns to their sum value. | |
polars summary | dataframe | For a dataframe, produces descriptive statistics (summary statistics) for its numeric columns. | |
polars take | dataframe | Creates new dataframe using the given indices. | |
polars unique | dataframe | Returns unique values from a dataframe. | uniq |
polars uppercase | dataframe | Uppercase the strings in the column. | |
polars value-counts | dataframe | Returns a dataframe with the counts for unique values in series. | |
polars var | expression, dataframe | Create a var expression for an aggregation. | |
polars when | expression | Creates and modifies a when expression. | |
polars with-column | dataframe | Adds a series to the dataframe. | insert <column_name> <value> | upsert <column_name> { <new_value> } |
Future of Dataframes
We hope that by the end of this page you have a solid grasp of how to use the dataframe commands. As you can see they offer powerful operations that can help you process data faster and natively.
However, the future of these dataframes is still very experimental. New commands and tools that take advantage of these commands will be added as they mature.
Check this chapter, as well as our Blog, regularly to learn about new dataframes features and how they can help you process data faster and efficiently.